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Abstract

The objective of this paper is to analyze chaotic motion and its control in an automotive wiper system, which

consists of two blades driven by a DC motor via one link. The dynamical behaviors are numerically investigated by

means of time responses, Poincare maps and frequency spectra. By using largest Lyapunov exponents, the periodic and

chaotic motions are verified. Finally, the state feedback control method is applied to control chaotic motions effec-

tively.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Running a wiper system on a car windshield leads to many vibratory phenomena that may be harmful to

the driver. Chatter vibrations are often observed in an automotive wiper. Their occurrence spoils com-
fortable driving. To find an effective way to control chatter vibrations, we attempt to clarify the behavior of

the wiper system. The analysis of chatter vibrations performed by Suzuki and Yasuda (1998), leads to the

following conclusions: Firstly, chattering is a self-excited vibration based on a stick-slip phenomenon.

Secondly, the blade only vibrates within a certain range of speed. Beyond this range, the chatter vibrations

no longer occur. This second property is a special feature of the stick-slip phenomenon as can be observed

in other physical systems (Tarng and Cheng, 1995; Mokhtar et al., 1998; Oancea and Laursen, 1998).

A number of numerical analyses, such as bifurcation diagram, phase portraits, Poincare map, frequency

spectra and Lyapunov exponents, are used to study the dynamical behaviors of the wiper system. For a
broad range of parameters, the Lyapunov exponent is the most powerful method to measure the sensitivity

of the dynamical system to change in initial conditions. It can help us to examine whether the system is in

chaotic motion or not. The algorithms for computing Lyapunov exponents of smooth dynamical systems
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are well developed (Shimada and Nagashima, 1979; Wolf et al., 1985; Benettin et al., 1980a,b). But there are

nonsmooth dynamical systems with discontinuities, where this algorithm cannot be directly applied, for

example, in machine dynamics due to dry friction, backlash, or impact. However, the methods of the

calculation of Lyapunov exponents for nonsmooth dynamical systems have been proposed only in several
papers (Muller, 1995; Hinrichs et al., 1997; Stefanski, 2000). The estimated method of the largest Lyapunov

exponent for wiper system proposed by Stefanski (2000) is used in this paper.

Although chaotic behavior may be acceptable, it is, on the whole, undesirable since it can will degrade

performance and restrict the operating range of many electric and mechanic devices. Recently, the control

of chaotic stick-slip mechanical system is being further developed, several techniques have been proposed in

Galvanetto (2001), Dupont (1991), and Feeny and Moon (2000). Galvanetto (2001) applied the adaptive

control to control unstable periodic orbits embedded in chaotic attractors of some discontinuous

mechanical systems. Feeny and Moon (2000) have applied high-frequency excitation, or dither, to quench
stick-slip chaos. In order to improve the wiper system performance or avoid chatter vibration in an

automotive wiper, we have to control a chaotic motion to a periodic orbit to a steady state. For this

purpose, a simple control method proposed by Cai et al. (2002) is used in this paper to convert chaos into

periodic motion through adapting linear state feedback of an available system variable.
2. Formulation of problem

A front wiper system has two blades. They are attached to the windshield at the driver�s side and the

passenger�s side. Each blade is supported by an arm, which moves to and fro around the pivot. This motion

is given by the rotating motion of a DC motor via a pantographic link. The schematic diagram of auto-

motive wiper system is shown in Fig. 1. In this figure, the symbols with subscripts D and P are referred to as

driver�s and passenger�s side, respectively. The lines Li represent no deflection positions. The symbols hi

(i ¼ D;P) are the angular deflections with respect to the position Li while the notations _wi are the angular

velocity of the arms. The symbols li represent the length of the wiper arm and _zi represent relative velocities
of the blades with respect to Li at the position of the top of the wiper arms. Then:
_zi ¼ ð _hi þ _wiÞli ði ¼ D;PÞ: ð1Þ
In accordance with Newton�s second law, the governing equations for a wiper on the i�s (i ¼ D;P) side can
be expressed as follows (Suzuki and Yasuda, 1998):
Fig. 1. The wiper system.



Table

Param

Syst

ID
IP
KD

KP

KM

CDP

CP

lP
lD
wP

ND

NP

lD

l1

l2
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when

_zi 6¼ 0;

Ii€hi ¼ �Ri � Di �Mið_ziÞ;
when

_zi ¼ 0; jRijPNilil0;

Ii€hi ¼ �Ri � Di �Mið_ziÞ;
when

_zi ¼ 0; jRij < Nilil0;

Ii€hi ¼ 0ð _hi ¼ � _wiÞ;

ð2Þ
where the symbols Ii are the moments of inertia and Mi are the moments induced by the friction force

between the wiper blades and the windshield. Ri and Di are the moments produced by the restoring force

and the damping force, respectively. That is given as follows:
RD ¼ kDhD � kDPhP; RP ¼ kPhP � kPDhD; ð3Þ

DD ¼ cD _hD � cDP
_hP; DP ¼ cP _hP � cPD _hD; ð4Þ
where
kD ¼ KDðKP þ KMÞ=ðKD þ KP þ KMÞ; kDP ¼ kPD ¼ KDKP=ðKD þ KP þ KMÞ;
kP ¼ KPðKD þ KMÞ=ðKD þ KP þ KMÞ; cD ¼ CDP; cP ¼ CDP þ CP;

cDP ¼ cPD ¼ CDP:
The moments Mi can be written as:
Mið_ziÞ ¼ Nililð_ziÞ; ð5Þ
where Ni is the normal force. The coefficient of friction, l, which can be expressed using the following

relationship proposed by (Suzuki and Yasuda, 1995):
1

eter values of the wiper system

em parameter Value Unit

4.07· 10�2 kgm2

3.67· 10�2 kgm2

7.20· 10�2 Nm/rad

7.51· 10�2 Nm/rad

3.53· 10�2 Nm/rad

1.00· 10�2 Nm s/rad

1.00· 10�2 Nm s/rad

4.50· 10�1 m

4.70· 10�1 m

1.16·wD rad/s

7.35 N

5.98 N

1.18

)9.84· 10�2

4.74· 10�1
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lð_ziÞ ¼ l0 sgnð_ziÞ þ l1 _zi þ l2 _z
3
i ði ¼ D;PÞ: ð6Þ
Let x1 ¼ hD, x2 ¼ _hD, x3 ¼ hP and x4 ¼ _hP be the state variables, the state equations of the wiper system (Eq.

(2)) on the driver�s side can be written as follows:
when

_zD 6¼ 0;

_x1 ¼ x2;

_x2 ¼ ð�RD � DD �MDð_zDÞÞ=ID;

when

_zD ¼ 0; jRDjPNDlDl0;

_x1 ¼ x2;

_x2 ¼ ð�RD � DD �MDð_zDÞÞ=ID;

when

_zD ¼ 0; jRDj < NDlDl0;

x2 ¼ � _wD;

_x1 ¼ x2;

_x2 ¼ 0:

ð7aÞ
Fig. 2. Bifurcation diagram of the angular velocity of the arm of driver�s side _wD versus angular deflection x1.
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The state equations of the wiper system (Eq. (2)) on the passenger�s side can be written as follows:
when

_zP 6¼ 0;
_x3 ¼ x4;
_x4 ¼ ð�RP � DP �MPð_zPÞÞ=IP;

when

_zP ¼ 0; jRPjPNPlPl0;
_x3 ¼ x4;
_x4 ¼ ð�RP � DP �MPð_zPÞÞ=IP;

when

_zP ¼ 0; jRPj < NPlPl0;

x4 ¼ � _wP;
_x3 ¼ x4;
_x4 ¼ 0:

ð7bÞ
These values of the parameters of the above equations are listed in Table 1.
Fig. 3. Period-one orbit for _wD ¼ 1:5 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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3. The overall characteristics of the system and chaos attitude motion

To clearly understand the characteristics of this system, we carry out a series of numerical simulations

from Eqs. (7). The resulting bifurcation diagram is shown in Fig. 2. The dynamic behavior may be observed
more completely over a range of parameter values by the bifurcation diagram. It is a widely used technique

to describe a transition from periodic motion to chaotic motion for a dynamical system. It can be clearly

seen from this figure that the chaotic motions appear approximately at regions II and IV. Period-three

motion appears in region III and period-n orbits display in region I. Here, each type of response is char-

acterized by a phase portrait, Poincare map (velocity vs. phase angle), and frequency spectrum.

Fig. 3 shows the period-one solution. In other words, while wiping speed is high enough, equilibrium

point of Eqs. (7) is stable. This means that no chatter vibrations will occur. This stable situation continues

until the wiper speed decreases into the region I in Fig. 2, the stable period-n orbits, such as period-five orbit
(as shown in Fig. 4) and period-seven orbit (see Fig. 5) or a quasi-periodic motion (presented in Fig. 6),

namely ‘‘torus motion’’ that produces by two incommensurate frequencies, appear to this system. As the

wiper speed continues to decrease into the regions II and IV in Fig. 2, the chaotic vibrations take place. This

means that the chatter vibration occurs. The particular features of two descriptors characterize the essence
Fig. 4. Period-five orbit for _wD ¼ 1:215 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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of the chaotic behavior: the Poincare map and the frequency spectrum. The Poincare map shows an infinite

set of points referred to as a strange attractor. Simultaneously, the frequency spectrum of chaotic motion

contains a broad band. The two features that strange attractor and continuous type Fourier spectrum are

strong indicators of chaos. Their phase portraits, Poincare maps, and frequency spectra are shown in Figs.
7 and 8, respectively. The period-three bifurcation occurs in region III in Fig. 2, which eventually results in

a chaotic motion. To see this behavior in detail, phase portrait, Poincare map, and frequency spectrum are

shown in Fig. 9.
4. Chaotic behavior

In this section, we wish to demonstrate that the automotive wiper system has chaotic behavior, by

computing the maximal Lyapunov exponent. Any system containing at least one positive Lyapunov

exponent is defined to be chaotic. Lyapunov exponents are a measure of the rate of divergence (or con-

vergence) of two initial nearby orbits. Recently, Stefanski (2000) has suggested a simple and effective

method of estimation of the largest Lyapunov exponent, which utilizes the properties of synchronization
Fig. 5. Period-seven orbit for _wD ¼ 1:068 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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phenomenon. This method can be explained briefly: the dynamical system is decomposed into two sub-

systems as follows:

drive system:
_x ¼ f ðxÞ; ð8Þ

response system:
_y ¼ f ðyÞ: ð9Þ

Consider a dynamical system, which is composed, of two identical n-dimensional subsystems, where only

the response system (8) is combined with a coupling coefficient d, while the equation of drive remain the

same. The first order differential equations describing such a system can be written as:
_x ¼ f ðxÞ; _y ¼ f ðyÞ þ d: ð10Þ
Fig. 6. Quasi-periodic motion for _wD ¼ 1:054 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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Now the condition of synchronization (Eq. (10)) is given by the inequality:
d > kmax: ð11Þ
The smallest value of the coupling coefficient d, for which the synchronization takes place ds is assumed

to be equal to the maximum Lyapunov exponent:
ds ¼ kmax: ð12Þ
The results of numerical calculations are listed in Fig. 10, which shows the largest Lyapunov exponents

that have been obtained using the described synchronization method.
5. Controlling chaos

In order to improve the performance of a dynamic system or avoid the chaotic behaviors, we need to

control a chaotic system to a periodic motion, which is beneficial for working with a particular condition. It

is thus of great practical importance to develop suitable control methods. Recently, Cai et al. (2002) have
Fig. 7. Chaotic motion for _wD ¼ 0:5 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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suggested a simple and effective control method, which converts chaos into periodic motion by using linear

state feedback of an available system variable. This method can be explained briefly: the n-dimensional

dynamical system
_x ¼ f ðx; tÞ; ð13Þ
where xðtÞ 2 Rn is the state vector, and f ¼ ðf1; . . . ; fi; . . . ; fnÞ, where fi is linear or nonlinear function and

f includes at least one nonlinear function. Suppose fkðx; tÞ is the nonlinear function that leads to chaotic

motion in system (13), then only one term of state feedback of available system variable xm is added to the

equation that includes fk as follows:
_xk ¼ fkðx; tÞ þ Gxm; k;m 2 f1; 2; . . . ; ng; ð14Þ
where G is feedback gain, and other functions keep their original forms.
Fig. 8. Chaotic motion for _wD ¼ 0:3 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.



Fig. 9. Period-three orbit for _wD ¼ 0:398 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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We consider Eq. (7a) with state feedback control on the driver�s side can be written as follows:
when

_zD 6¼ 0;

_x1 ¼ x2;
_x2 ¼ ð�RD � DD �MDð_zDÞÞ=ID þ Gx2;

when

_zD ¼ 0; jRDjPNDlDl0;

_x1 ¼ x2;
_x2 ¼ ð�RD � DD �MDð_zDÞÞ=ID þ Gx2;

when

_zD ¼ 0; jRDj < NDlDl0;

x2 ¼ � _wD;

_x1 ¼ x2;
_x2 ¼ 0þ Gx2:

ð15aÞ



Fig. 10. The evolutions of the largest Lyapunov exponent.

Fig. 11. Period-one motion of the wiper system with state feedback control (G ¼ 8:8). The control signal is added after 22 s: (a) time

response; and (b) controlled orbit.
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We consider Eq. (7b) with state feedback control on the passenger�s side can be written as follows:
when

_zP 6¼ 0;

_x3 ¼ x4;

_x4 ¼ ð�RP � DP �MPð_zPÞÞ=IP þ Gx4;

when

_zP ¼ 0; jRPjPNPlPl0;

_x3 ¼ x4;

_x4 ¼ ð�RP � DP �MPð_zPÞÞ=IP þ Gx4;

when

_zP ¼ 0; jRPj < NPlPl0;

x4 ¼ � _wP;

_x3 ¼ x4;

_x4 ¼ 0þ Gx4:

ð15bÞ
When G ¼ 0 and _wD ¼ 0:5, Eqs. (15) displays chaotic motion (see Fig. 7). In order to convert the dynamics

of system (15) from chaotic motion to the periodic motion, the chosen feedback gain G is 8.8. The time

response of x1 is shown in Fig. 11(a) where the state feedback control is added after 22 s. Fig. 11(b) shows

the phase portrait of the system after control.
6. Conclusions

Our main purpose in this paper is to study chaotic attitude behavior and the problem of chaos control on

an automotive wiper system. Numerical methods including time responses, Poincare maps, frequency

spectra and the largest Lyapunov exponent are employed to obtain the characteristics of the nonlinear

wiper system. Many nonlinear and chaotic phenomena have been displayed in bifurcation diagrams. From

this diagram, we can find that the chaotic motion appears a lot in lower wiping speed for wiper system. In
order to examine whether the system is in chaotic motion or not, the Lyapunov exponent will be the most

useful method to diagnostics for chaotic system. The method of estimation of the largest Lyapunov

exponent for wiper system uses the properties of synchronization phenomenon. Finally, in order to

effectively improve the performance of wiper system or avoid the chaotic motions, the state-feedback

control method is applied to suppress chaotic motion.
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