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Abstract

The objective of this paper is to analyze chaotic motion and its control in an automotive wiper system, which
consists of two blades driven by a DC motor via one link. The dynamical behaviors are numerically investigated by
means of time responses, Poincare maps and frequency spectra. By using largest Lyapunov exponents, the periodic and
chaotic motions are verified. Finally, the state feedback control method is applied to control chaotic motions effec-
tively.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Running a wiper system on a car windshield leads to many vibratory phenomena that may be harmful to
the driver. Chatter vibrations are often observed in an automotive wiper. Their occurrence spoils com-
fortable driving. To find an effective way to control chatter vibrations, we attempt to clarify the behavior of
the wiper system. The analysis of chatter vibrations performed by Suzuki and Yasuda (1998), leads to the
following conclusions: Firstly, chattering is a self-excited vibration based on a stick-slip phenomenon.
Secondly, the blade only vibrates within a certain range of speed. Beyond this range, the chatter vibrations
no longer occur. This second property is a special feature of the stick-slip phenomenon as can be observed
in other physical systems (Tarng and Cheng, 1995; Mokhtar et al., 1998; Oancea and Laursen, 1998).

A number of numerical analyses, such as bifurcation diagram, phase portraits, Poincare map, frequency
spectra and Lyapunov exponents, are used to study the dynamical behaviors of the wiper system. For a
broad range of parameters, the Lyapunov exponent is the most powerful method to measure the sensitivity
of the dynamical system to change in initial conditions. It can help us to examine whether the system is in
chaotic motion or not. The algorithms for computing Lyapunov exponents of smooth dynamical systems
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are well developed (Shimada and Nagashima, 1979; Wolf et al., 1985; Benettin et al., 1980a,b). But there are
nonsmooth dynamical systems with discontinuities, where this algorithm cannot be directly applied, for
example, in machine dynamics due to dry friction, backlash, or impact. However, the methods of the
calculation of Lyapunov exponents for nonsmooth dynamical systems have been proposed only in several
papers (Muller, 1995; Hinrichs et al., 1997; Stefanski, 2000). The estimated method of the largest Lyapunov
exponent for wiper system proposed by Stefanski (2000) is used in this paper.

Although chaotic behavior may be acceptable, it is, on the whole, undesirable since it can will degrade
performance and restrict the operating range of many electric and mechanic devices. Recently, the control
of chaotic stick-slip mechanical system is being further developed, several techniques have been proposed in
Galvanetto (2001), Dupont (1991), and Feeny and Moon (2000). Galvanetto (2001) applied the adaptive
control to control unstable periodic orbits embedded in chaotic attractors of some discontinuous
mechanical systems. Feeny and Moon (2000) have applied high-frequency excitation, or dither, to quench
stick-slip chaos. In order to improve the wiper system performance or avoid chatter vibration in an
automotive wiper, we have to control a chaotic motion to a periodic orbit to a steady state. For this
purpose, a simple control method proposed by Cai et al. (2002) is used in this paper to convert chaos into
periodic motion through adapting linear state feedback of an available system variable.

2. Formulation of problem

A front wiper system has two blades. They are attached to the windshield at the driver’s side and the
passenger’s side. Each blade is supported by an arm, which moves to and fro around the pivot. This motion
is given by the rotating motion of a DC motor via a pantographic link. The schematic diagram of auto-
motive wiper system is shown in Fig. 1. In this figure, the symbols with subscripts D and P are referred to as
driver’s and passenger’s side, respectively. The lines L; represent no deflection positions. The symbols 6;
(i = D, P) are the angular deflections with respect to the position L; while the notations {p,. are the angular
velocity of the arms. The symbols /; represent the length of the wiper arm and z; represent relative velocities
of the blades with respect to L; at the position of the top of the wiper arms. Then:

Z; = (gi"_l.pi)li (i=D,P). (1)

In accordance with Newton’s second law, the governing equations for a wiper on the i’s (i = D, P) side can
be expressed as follows (Suzuki and Yasuda, 1998):

Fig. 1. The wiper system.
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21’ = 07 |R,| < ]vili,HO)
[161 = 0(91' = _l.pi),
where the symbols /; are the moments of inertia and M; are the moments induced by the friction force

between the wiper blades and the windshield. R; and D; are the moments produced by the restoring force
and the damping force, respectively. That is given as follows:

Rp = kpOp — kppOp, Rp = kpOp — kpp0p, (3)
Dp = cplp — cpplp,  Dp = cplp — cppOp, (4)
where

kp = Kp(Kp + Km)/(Kp + Kp +Ky),  kpp = kpp = KpKp/(Kp + Kp + K1),
kp = Kp(Kp + Km)/(Kp + Kp + Km),  ¢p = Cpp, ¢p = Cpp + Cp,
cpp = cpp = Cpp.
The moments M; can be written as:
M;i(z) = Niliu(z:), (5)

where N, is the normal force. The coefficient of friction, u, which can be expressed using the following
relationship proposed by (Suzuki and Yasuda, 1995):

Table 1

Parameter values of the wiper system
System parameter Value Unit
Ip 4.07x1072 kgm?
I 3.67x1072 kgm?
Kp 7.20x 1072 N m/rad
Kp 7.51x1072 Nm/rad
Ky 3.53x 1072 Nm/rad
Cpp 1.00x 1072 N ms/rad
Cp 1.00x 102 Nms/rad
Ip 4.50x107! m
Ip 4.70x 107! m
Vp L.16 Xy rad/s
Np 7.35 N
Np 5.98 N
Up 1.18
I -9.84x1072

1L 4.74% 107!
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WE) = po sgn(z) + iz + w2z (i =D,P).

(6)

Letx; = 0p, x; = QD, x3 = 0pand x4, = 0p be the state variables, the state equations of the wiper system (Eq.

(2)) on the driver’s side can be written as follows:

when

zp # 0,

X1 = X2,

X, = (—Rp — Dp — Mp(zp))/Ip,
when

2D - 07 |RD| > NDZDI'LO7

).Cl = X2,
%, = (—Rp — Dp — Mp(zp))/Ip,
when

zp = 0,|Rp| < Nplpuy,

Xy = 7lpD7
).Cl = X2,
X, =0.

1681
16 regionlV

11 (rad)

region II1

region |

Fig. 2. Bifurcation diagram of the angular velocity of the arm of driver’s side z/}D versus angular deflection x;.

1
W, (rad/s)

12

1.4

(7a)
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The state equations of the wiper system (Eq. (2)) on the passenger’s side can be written as follows:

when

éP 7é Oa

X3 = Xy,

X4 = (—Rp — Dp — Mp(2p))/Ip,
when

zp =0, |Rp| = Nplppy,

5C3 = X4, (7b)

¥4 = (—Rp — Dp — Mp(zp))/Ip,
when

zp =0, !RP| < Nplppy,

X4 = _lva

X3 = X4,

X4 =0.

These values of the parameters of the above equations are listed in Table 1.
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Fig. 3. Period-one orbit for l.ﬁD = 1.5 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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3. The overall characteristics of the system and chaos attitude motion

To clearly understand the characteristics of this system, we carry out a series of numerical simulations
from Egs. (7). The resulting bifurcation diagram is shown in Fig. 2. The dynamic behavior may be observed
more completely over a range of parameter values by the bifurcation diagram. It is a widely used technique
to describe a transition from periodic motion to chaotic motion for a dynamical system. It can be clearly
seen from this figure that the chaotic motions appear approximately at regions II and IV. Period-three
motion appears in region III and period-n orbits display in region I. Here, each type of response is char-
acterized by a phase portrait, Poincare map (velocity vs. phase angle), and frequency spectrum.

Fig. 3 shows the period-one solution. In other words, while wiping speed is high enough, equilibrium
point of Egs. (7) is stable. This means that no chatter vibrations will occur. This stable situation continues
until the wiper speed decreases into the region I in Fig. 2, the stable period-n orbits, such as period-five orbit
(as shown in Fig. 4) and period-seven orbit (see Fig. 5) or a quasi-periodic motion (presented in Fig. 6),
namely “torus motion” that produces by two incommensurate frequencies, appear to this system. As the
wiper speed continues to decrease into the regions II and IV in Fig. 2, the chaotic vibrations take place. This
means that the chatter vibration occurs. The particular features of two descriptors characterize the essence
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Fig. 4. Period-five orbit for l.ﬂD = 1.215 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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of the chaotic behavior: the Poincare map and the frequency spectrum. The Poincare map shows an infinite
set of points referred to as a strange attractor. Simultaneously, the frequency spectrum of chaotic motion
contains a broad band. The two features that strange attractor and continuous type Fourier spectrum are
strong indicators of chaos. Their phase portraits, Poincare maps, and frequency spectra are shown in Figs.
7 and 8, respectively. The period-three bifurcation occurs in region III in Fig. 2, which eventually results in
a chaotic motion. To see this behavior in detail, phase portrait, Poincare map, and frequency spectrum are
shown in Fig. 9.

4. Chaotic behavior

In this section, we wish to demonstrate that the automotive wiper system has chaotic behavior, by
computing the maximal Lyapunov exponent. Any system containing at least one positive Lyapunov
exponent is defined to be chaotic. Lyapunov exponents are a measure of the rate of divergence (or con-
vergence) of two initial nearby orbits. Recently, Stefanski (2000) has suggested a simple and effective
method of estimation of the largest Lyapunov exponent, which utilizes the properties of synchronization
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Fig. 5. Period-seven orbit for x/}D = 1.068 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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phenomenon. This method can be explained briefly: the dynamical system is decomposed into two sub-
systems as follows:

drive system:

X = f(x)a (8)
response system:
y=rf). 9)

Consider a dynamical system, which is composed, of two identical n-dimensional subsystems, where only
the response system (8) is combined with a coupling coefficient d, while the equation of drive remain the
same. The first order differential equations describing such a system can be written as:

x=f(x), y=f0)+d. (10)
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Fig. 6. Quasi-periodic motion for x&D = 1.054 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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Now the condition of synchronization (Eq. (10)) is given by the inequality:
d > Jmax- (11)

The smallest value of the coupling coefficient d, for which the synchronization takes place d; is assumed
to be equal to the maximum Lyapunov exponent:

dy = Jmax. (12)

The results of numerical calculations are listed in Fig. 10, which shows the largest Lyapunov exponents
that have been obtained using the described synchronization method.

5. Controlling chaos
In order to improve the performance of a dynamic system or avoid the chaotic behaviors, we need to

control a chaotic system to a periodic motion, which is beneficial for working with a particular condition. It
is thus of great practical importance to develop suitable control methods. Recently, Cai et al. (2002) have
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Fig. 7. Chaotic motion for {pD = 0.5 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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suggested a simple and effective control method, which converts chaos into periodic motion by using linear
state feedback of an available system variable. This method can be explained briefly: the n-dimensional
dynamical system

X:f(x,t), (13)

where x(¢) € R" is the state vector, and f = (f1,..., /i, .., /n), Where f; is linear or nonlinear function and
f includes at least one nonlinear function. Suppose f;(x, ) is the nonlinear function that leads to chaotic
motion in system (13), then only one term of state feedback of available system variable x,, is added to the
equation that includes f; as follows:

xk:fk(xat)+me7 k7m€{1727"'an}a (14)

where G is feedback gain, and other functions keep their original forms.
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Fig. 8. Chaotic motion for 1/th = 0.3 (rad/s): (a) phase portrait; (b) Poincare map; and (c) frequency spectrum.
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Fig. 9. Period-three orbit for 1]/D = 0.398 (rad/s): (a) phase portrait; (b) Poincare map;

Frequency
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and (c) frequency spectrum.

We consider Eq. (7a) with state feedback control on the driver’s side can be written as follows:

when
2D 7é 07
x| = Xy,

¥, = (—Rp — Dp — Mp(zp))/Ip + Gx,

when

zp = 0,[Rp| = Nplbuy,
X = Xz,
X, = (—Rp — Dp — Mp(zp))/Ip + Gx,,

when

éD = 07 |RD| < NDlDan
X2 = _wDa

).C] = X2,

).62 =0 + GXZ.

(15a)
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We consider Eq. (7b) with state feedback control on the passenger’s side can be written as follows:

when

zp #0,

X3 = Xy,

X4 = (—Rp — Dp — Mp(2p))/Ip + Gxy,
when

zp =0, |Rp| = Nplppy,

X3 = X4, (15b)

X4 = (—Rp — Dp — Mp(2p))/Ip + G,
when

zp =0, |Rp| < Nplpyy,

X4 = _‘LPa

X3 = X4,

X4 = 0+ Gxy.

When G = 0 and {pD = 0.5, Egs. (15) displays chaotic motion (see Fig. 7). In order to convert the dynamics
of system (15) from chaotic motion to the periodic motion, the chosen feedback gain G is 8.8. The time
response of x; is shown in Fig. 11(a) where the state feedback control is added after 22 s. Fig. 11(b) shows
the phase portrait of the system after control.

6. Conclusions

Our main purpose in this paper is to study chaotic attitude behavior and the problem of chaos control on
an automotive wiper system. Numerical methods including time responses, Poincare maps, frequency
spectra and the largest Lyapunov exponent are employed to obtain the characteristics of the nonlinear
wiper system. Many nonlinear and chaotic phenomena have been displayed in bifurcation diagrams. From
this diagram, we can find that the chaotic motion appears a lot in lower wiping speed for wiper system. In
order to examine whether the system is in chaotic motion or not, the Lyapunov exponent will be the most
useful method to diagnostics for chaotic system. The method of estimation of the largest Lyapunov
exponent for wiper system uses the properties of synchronization phenomenon. Finally, in order to
effectively improve the performance of wiper system or avoid the chaotic motions, the state-feedback
control method is applied to suppress chaotic motion.
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